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Abstract
The structure of a steady wave system is considered which is admitted by
the continuum equations for materials that undergo phase transformations with
exothermic chemical reaction. In particular, the dynamic phase front structures
between liquid and gas phases and solid and liquid phases are computationally
investigated. With its theoretical basis in one-dimensional continuum shock
structure analysis, the present approach estimates the micro-width of waves
associated with phase transformation phenomena. For illustration purposes,
n-heptane is used in the evaporation and condensation analysis and HMX is
used in the melting and freezing analysis of energetic materials of interest. The
estimated thickness of the evaporation–condensation front of n-heptane is on the
order of 10−2 µm while the HMX melting–freezing front thickness is estimated
at 1 µm. The present structure analysis is being extended to account for a
broader range of energetic materials whose phase front thickness measurements
are neither available nor experimentally attainable.

1. Introduction

In the continuum theory, shock is interpreted as a thin region rather than a discontinuity in
which rapid changes of the flow quantities occur. Two uniform end states of a typical shock
are related through a smooth structure of finite length in microns where the conservation of
mass, momentum and energy is achieved [1–3]. In this paper, a new method of estimating the
thickness of a wavefront associated with phase transformations that propagates in much the
same way as a shock wave in a continuous media is presented.

There have been many papers on the discussion of shock wave structure using both
continuum and kinetic theoretical ways of viewing the problem. In the late 1950s, the solution
of the Navier–Stokes (NS) model of the continuum was analysed with great detail. The essence
of the results obtained with the NS model as summarized in [4] is that its validity is satisfactory
for realistic fluids for Mach number up to 1.8. For fluids of Mach number greater than 2, a
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Figure 1. Schematic of shock-attached frame.
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different approach was necessary. The solution of Boltzmann’s equation describing the time
evolution of a dilute gas gained much interest after the NS model of the continuum. The direct
simulation Monte Carlo (DSMC) method is used to solve that equation. The solution in the
hydrodynamic regime is equivalent to the NS model, except that the transport coefficients are
obtained in terms of molecular parameters characteristic of each gas. Ruggeri in [5] showed
that the solution to the NS model’s upper limit (Mach no. < 2) does not exist. For a simple
dilute gas, the full nonlinear Burnett equations of hydrodynamics as they appear from the
Chapman–Enskog solution to the Boltzmann equation showed that the shock wave profiles in
Mach number greater than or equal to two are significantly improved. Amongst different ways
of viewing shocks, the continuum approach has gained much interest for propagating interfaces
in a simple dilute gas.

Along the line of computing the structure of hydrodynamic shock waves in fluids for a wide
range of Mach numbers, we develop an innovative method for analysing the structure of phase
fronts in the sense of melting (or freezing) and vaporization (or condensation) between two
thermodynamic phases. The analysis of the phase wave profile is based on the theoretical model
for energetic materials that was first introduced in [6, 7] where the thermo-mechanical model
is derived for a material that experiences phase changes and possible exothermic chemical
reaction. A unique feature of the model is that an extra field variable ϕ is introduced in the
time evolution equations so that the current phase of materials considered is automatically
determined as a part of the state variables. This phase field approach eliminates the need for
cumbersome interface balancing between the two phases. The global treatment of the phase
field is the key in this work, where we handle the material phase fronts like the hydrodynamic
shock waves and apply the structure analysis to the phase front thickness estimation for the
condensed matter, namely an energetic liquid or solid fuel.

In this paper, the liquid–vapour interface is considered that represents the boundary
between evaporation and condensation for the hydrocarbon liquid fuel. The phase front of
the solid–liquid interface is also analysed for a typical solid explosive. An n-heptane and an
HMX are used in the illustration of profiling the phase wave structures.

2. Preliminary

The shocked state is the unstable equilibrium. The integration of the structure starts from this
point to a stable point of the unshocked state. Figure 1 shows a steady shock coordinate where
ξ = x − Dt, U = u − D and velocities both upstream and downstream are negative, pointing
left. Here D is the steady wave speed, directed in the negative ξ direction (i.e. D < 0). The
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derivatives with respect to x and t become

∂
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∂ t

d

dξ
= −D

d

dξ
; ∂

∂x
= d

dξ
(1)

and the velocity gradient becomes

∂u

∂x
= dU

dξ
. (2)

Thus the equations of motion for the ideal gas are obtained as follows:
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dU
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where m = ρU and p = ρRT . Using the standard constants of air (e.g. µ f = 1.95 ×
10−5 N s m−2, γ = 1.4, κ = 0.0276 W m−1 K−1, and R = 287 m2 s−2 K−1), one can integrate
from a shocked state into an unshocked state or the quiescent ambience.

In the sections that follow, the governing equations for energetic materials that may
undergo phase transformations are reviewed. Then the wave thickness associated with
propagating melting–freezing or evaporation–condensation phase fronts are calculated in much
the same way as in the classical shock structure analysis discussed in this section. With careful
handling of these structure equations with accurate material parameters, a sensible estimation
of the micro-scale phase front thickness is obtained by this method.

3. Review of governing equations for energetic materials

In [6, 7], a three-dimensional model was derived for energetic materials whose state variables
represent the change of phase from solid to liquid to gas. Since the derivation based on the
classical thermomechanics is general for a material whose material properties are known, the
governing equations can represent various kinds of energetic materials of one’s interest. The
one-dimensional equations for classical energetic material with three possible phases (solid,
liquid, gas) are described here:
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Bϕ

(
∂ϕ

∂ t
+ u

∂ϕ

∂x

)
= ∂

∂x

(
ργϕ

∂ϕ

∂x

)

− µ′
s(ϕ)

1

2
F−1

(
F2 − 1

)

− µ′
c(ϕ)

1 − 2νs

2νs
F−1

(
F

−2νs
1−2νs − 1

)
− µ′

l

3

2
F−1/3

+ ρc′
v(ϕ)

(
T ln

T

T0
− (T − T0)

)

− ρ
1

2



∂

∂ϕ

({(ϕ)(ϕ − 1)(ϕ − 2)}2
)

− ρβ ′
m(ϕ)

T − Tm

Tm
Qm − ρβ ′

v(ϕ)
T − Tv

Tv

Qv. (10)

Here ρ is the mass density, F the deformation gradient, and ϕ the phase-field variable.
These equations represent the balance laws for conservation of mass, momentum, deformation,
energy, and phase-field in order. The variable ϕ is normalized in such a way that ϕ = 0
corresponds to a solid, ϕ = 1 a liquid, and ϕ = 2 a gas. In the regions where the phase is
pure (i.e. ϕ = 0, 1, or 2) the material properties and the constitutive relations must describe the
pure material with the properties of that phase. For clarity in the phase structure analysis, the
exothermic chemical reaction element from the original equations in [6] is already suppressed
in the present discussion.

As in the classical shock structure analysis, one-dimensional equations are sufficient for
illustrating the structure of phase front profiles for materials that undergo phase transformation.
In this work, both liquid and solid forms of energetic materials are considered to describe a
basic methodology for obtaining phase front profiles.

3.1. Material transition functions

The important element of the master equations derived in equations (6)–(10) is the use of ϕ-
dependent material properties or the material transition functions. Their most prominent use is
in defining the sources of the ϕ-evolution equation and the energy (temperature) equation. The
functions µc(ϕ), µs(ϕ), µl(ϕ), αc(ϕ), R(ϕ), and cv(ϕ) all change with the phase variable ϕ.
These functions are defined in such a way that they take on the relevant values for each phase
(solid, liquid, gas) of a material. The ϕ-dependent material transition functions are made of
simple, smooth, or piece-wise smooth polynomials of ϕ as summarized in the appendix.

4. Structure of phase front

Two uniform end states of a typical phase front are related through a smooth structure of
finite length in a fraction of a micron where the conservation of mass, momentum, and
energy is achieved. Resembling the classical shock structure of a dilute gas, the evaporation–
condensation front and melting–freezing front are considered for the two uniform end states.

4.1. Evaporation and condensation front (1 < ϕ < 2)

The detailed wave structure between the end states at ±∞ is obtained by transforming the
unsteady flow equations to the steady equations in a frame of reference moving with the wave
using ξ = x − Dt, U = u − D. Here D is the steady phase front ‘wave’ speed, directed in
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the negative ξ direction (i.e. D < 0). The derivatives with respect to x and t and the velocity
gradient ∂u/∂x are defined as before (see equations (1) and (2)).

The mass and momentum equations transform as

ρU = m (11)

ρU
dU

dξ
= d

dξ

(
σ + 4

3
µ f

dU

dξ

)
(12)

where the stress term is defined, σ = −ρRT − ργϕ( ∂ϕ

∂x )2. It is natural to set F = 0 in
the governing equations for liquid or gas to reflect the zero deformation condition for the
corresponding phases.

Since the structure of a wave is considered, the momentum equation is integrated with
respect to ξ , which results in a first-order ODE,

mU − σ − 4

3
µ f

dU

dξ
= β (13)

where β is a constant of integration which is evaluated by letting ξ approach −∞. With mass
flux defined constant m, the structure momentum equation reads
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dξ
. k denotes the far end conditions where k equals 1 for evaporation and 2 for
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As for the energy and phase-field structure equations, the partials with respect to x and

t are replaced with derivatives in ξ , and the total derivative φ̇ transforms to U dφ

dξ
where φ is

either T or ϕ. Here the specific heat is considered constant with respect to phase variable ϕ and
thus c′

v terms drop out from the governing equations. Now, the energy equation is written with
its highest derivative in the first order with a new variable H :
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where H = dT
dξ

. A temperature driving term β ′
v(ϕ)Qk is added to raise the temperature beyond

the vaporization temperature.
As for the phase equation, the governing equation reads
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ρ
+ 1
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v(ϕ)
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Qv

}
. (16)

Note the dependence of R and βv on ϕ. This ϕ-dependence of the transfer functions noted
earlier conforms the structure of waves associated with classical phase transformations. Table 1
summarizes the properties of n-heptane used in the present calculation.

The integration scheme for the resulting autonomous ODEs in ξ is the high-order Runge–
Kutta scheme outlined in [10]. In the case of evaporation, the liquid state at k = 1
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Figure 2. Evaporation wave (liquid ϕ = 1 → vapour ϕ = 2) structure based on the transformed
density field of n-heptane.

Table 1. Dimensional parameters for n-heptane evaporation/condensation [8, 9].

Property Units Value

Specific heat—liquid, cliq
v J kg−1 K−1 2.136 × 103 a

Specific heat—vapour, cvap
v J kg−1 K−1 2.136 × 101 b

Gas constant per unit mass, Rliq J kg−1 K−1 3.0 × 102 c

Gas constant per unit mass, Rvap J kg−1 K−1 3.0 × 102 a

Viscosity coefficient, µ f kg m−1 s−1 5.4 × 10−4 a

Multiplication factor of ϕ̇, Bϕ kg m−1 s−1 3.5 × 10−2 c

Phase diffusion coefficient, γϕ m kg s−2 2.0 × 10−12 c

Depth of phase well, 
 J kg−1 40.0 × 10−6 a

Vaporization temperature, Tv K 371.4 b

a Reference [8].
b Reference [9].
c Modelled.

(i.e. ξ = −∞) is fixed with the following set of quantities.

ρ1 = 675 kg m−3

m = 0.731 5515 kg m−2 s−1

D = 1.083 78 × 10−3 m s−1

u1 = 0 m s−1

T1 = 300 K
p1 = 6.075 00 × 105 Pa
ϕ1 = 1.000 0001
H = G = 0
Q1 = +3.35 × 1015 J




ξ = −∞.

The numerical integration begins from state 1 (liquid side) at −∞ to a state 2 (gas side) at +∞.
Figures 2–4 represent the structure of the evaporation wave admitted by the equations. As the



Analysis of phase front structures for energetic materials 8185

0 1E-07 2E-07

ξ (m)

0

0.05

0.1

0.15

U
 (

m
/s

)

Figure 3. Evaporation wave (liquid ϕ = 1 → vapour ϕ = 2) structure based on the transformed
velocity field of n-heptane.
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Figure 4. Evaporation wave (liquid ϕ = 1 → vapour ϕ = 2) structure based on the transformed
phase field of n-heptane.

initial state is perturbed, the solution of the structure equation is described by the integration
path, going through a particular structure-stable point on the far right side.

The velocity profile in figure 3 shows that the initial value (10−3 m s−1) experiences
a sudden increase (10−1 m s−1) at a structure-stable position where the density jump (in
figure 2) is consistent with the experimental evidence for an n-heptane evaporation [11–13].
The thickness of the evaporation wavefront as observed from these figures is on the order of
ten nanometres.
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Figure 5. Condensation wave (vapour ϕ = 2 → liquid ϕ = 1) structure based on the density field
of n-heptane.

Considering an experimental thickness measurement of similar waves in helium on the
orders of millimetres [14], the suggested evaporation front thickness is much smaller. At each
end, the temperature gradient is uniform so that T (−∞) is a constant and T (+∞) is linear with
respect to ξ , representing a far-field constant thermal-gradient condition for the evaporation
process.

In the case of condensation, vapour state 2 is fixed at −∞ as the integration marches along
the liquid side at +∞. The initial conditions of integration for condensation are as follows:

ρ2 = 5 kg m−3

U2 = 0.11 m s−1

m = 0.731 5515 kg m−2 s−1

T2 = 480 K
ϕ2 = 1.999 9991
H = G = 0
Q2 = −4.35 × 1014 J




ξ = −∞.

Here the integration is reversed from a fixed state k = 2 to a new state 1. Figures 5 and 6
represent the structure of the condensation wave admitted by the solution of the equations
described with k = 2. The structure is nearly identical to that of evaporation, except the
direction of integration is reversed. With a suitable value for the heat of condensation Q, the
integration begins from a vapour state to a liquid side through a thin region of phase front of
order ten nanometres.

The density profile in figure 5 resembles an experimental observation of fuel-droplet
condensation; the end state density is about 675 kg m−3, prototypical of hydrocarbon liquid
fuel [12, 9]. While the reverse heat is added to drive the vapour state back to a liquid, the far
end state temperature gradients remain uniform such that T (−∞) is constant and T (+∞) is
linearly decreasing with respect to ξ .
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Figure 6. Condensation wave (vapour ϕ = 2 → liquid ϕ = 1) structure based on the phase field of
n-heptane.

4.2. Melting and freezing front (0 < ϕ < 1)

The structure equations in the case of solid to liquid or liquid to solid transition are obtained
in analogy to the evaporation–condensation case. The main distinction in the equations is the
added dependence of conservative variables on the deformation field. A variable F is the
one-dimensional deformation gradient which is introduced into the momentum, energy, and
phase-field equations. Again with mass flux remaining a constant m, the momentum structure
equation, after being integrated from −∞ to a position in ξ , becomes

dU

dξ
= 3

4µ f

{
mU + p + ργϕG2 − µs F + µl F− 1

1−2νs − mUk − pk

}
(17)

where the equation of state and the thermal expansion terms of the general stress constitutive
equation are absorbed into an effective pressure, p. If k is set to unity the equation represents
melting, and if k = 2 the equation represents freezing. As for the energy equation, we have

dH

dξ
= 1

κ

{
mcv H − 4

3
µ f

(
dU

dξ

)2

+ (
ρRT + αcκ F−1T

) dU

dξ

− Bϕ(U G)2 − ρTβ ′
m(ϕ)

Qm

Tm
U G + β ′

m(ϕ)Qk

}
(18)

where, as in the evaporation–condensation case, a new variable H is used (H = dT
dξ

), which
is then solved together with equation (18). The specific heat cv is assumed constant as before.
The phase field equation reads

dG

dξ
= 1

γϕ

{
U BϕG + 1

2



∂

∂ϕ
{(ϕ(ϕ − 1)(ϕ − 2))2} + β ′

m(ϕ)
T − Tm

Tm
Qm

+ µ′
s

1

2
F−1(F2 − 1) + µ′

c

1 − 2νs

2νs
F−1(F− 2νs

1−2νs − 1) + µ′
l

3

2
F−1/3

}
. (19)

Lastly, we need to close the system with an additional equation which relates the deformation

gradient with the velocity field via the identity dF
dξ

= − F
Uk

dU
dξ

or F = e− U
Uk

+1.
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Table 2. Dimensional parameters for HMX melting/freezing.

Property Units Value

Specific heat—solid, csol
v J kg−1 K−1 1.06 × 103 a

Specific heat—liquid, cliq
v J kg−1 K−1 2.1 × 103 b

Gas constant per unit mass, Rsol J kg−1 K−1 1.1 b

Gas constant per unit mass, Rliq J kg−1 K−1 3.0 b

Thermal expansion coefficient, αsol 1/K 0.000 134 a

Thermal conductivity, κ W m−1 K−1 0.36 a

Viscosity coefficient, µ f kg m−1 s−1 1.0 × 10−3 c

Shear modulus—solid, µsol GPa 2.46 b

Shear modulus—liquid, µliq GPa 2.37 b

Poisson’s ratio, νs 0.414 c

Multiplication factor of ϕ̇, Bϕ kg m−1 s−1 3.5 × 10−2 b

Phase diffusion coefficient, γϕ m kg s−2 2.0 × 10−12 b

Depth of phase well, 
 J kg−1 40.0 × 10−6 b

Melting temperature, Tm K 558.0 c

a Reference [23].
b Modelled.
c LLNL Hand Book of Explosives, 1985.

For illustration of the melting and freezing front structure, we use HMX as the candidate
for solid–liquid structure analysis for which a handful of material data are known [15–19].
Table 2 lists the parameters of HMX as needed in the calculation of melting and freezing
structure. In the case of melting, the solid state of HMX is fixed by the following initial
conditions at ξ = −∞ with k = 1:

ρ1 = 2000 kg m−3

m = 2.0 × 103 kg m−2 s−1

D = 1.0 m s−1

u1 = 0 m s−1

T1 = 300 K
p1 = 6.075 00 × 105 Pa
ϕ1 = 0.000 0001
F = 1.000 000 01
H = G = 0
Q1 = +3.3 × 1014 J




ξ = −∞.

Since there are no data known for the melting rate of HMX, the value of D is assumed
to be in the range of 10−3–103 m s−1. The minimum in this range corresponds to a typical
deflagration rate while the maximum represents a typical detonation speed [20]. A natural
choice is to take the mean value, approximately 1 m s−1.

Figures 7–9 depict the structure of a melting front admitted by the equations. In particular,
the initial density of 2000 kg m−3, typical of solid explosive, decreases by a factor of two.
The system of ODEs of melting is integrated from a slightly perturbed initial state into a new
state representing a melt HMX. The thickness of the phase front is on the order of microns,
supporting the observation that the explosive melting front is approximately 100 times thicker
than the evaporation–condensation front of liquid fuel.

The initial state of solid HMX is unstressed (i.e. F = 1) while the end state of the
integration is at a compression state at F ∼ 0.3. In fact, the wave, a compression wave,
on the far right side, propagates into an unstressed material on the left side at a steady melting
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Figure 7. Melting front (solid ϕ = 0 → liquid ϕ = 1) structure observed from the transformed
density field of solid HMX.
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Figure 8. Melting front (solid ϕ = 0 → liquid ϕ = 1) structure observed from the transformed
phase field of solid HMX.

speed of D. This observation is consistent with the principle of energy transfer from a higher
state to a lower state. The temperature field also supports this observation that the uniform state
on the left is balanced by a linearly increasing thermal field (i.e. a thicker temperature transition
region) on the far right, causing the energy transfer to go from a liquid to a solid, essentially a
melting process [21, 22, 17].

In the case of freezing, liquid state 2 is fixed at −∞, and the integration starts from the
far left in the liquid region to a solid state at +∞. Listed below are the initial conditions of
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Figure 9. Melting front (solid ϕ = 0 → liquid ϕ = 1) structure observed from the transformed
temperature field of solid HMX.

integration for which the liquid state is assumed uniform:

ρ2 = 1580 kg m−3

U2 = 1.4 m s−1

m = 2.0 × 103 kg m−2 s−1

T2 = 700 K
ϕ2 = 0.999 999 91
F = 1.000 000 01
H = G = 0
Q2 = −4.2 × 1014 J




ξ = −∞.

Figures 10 and 11 represent the structure of a freezing front, admitted by the equations by
setting k = 2. Previous investigation of thermodynamic properties of HMX suggests that the
material can undergo a liquid–solid transition at a temperature 550 K and a pressure above
50 × 105 Pa. So the process of ‘freezing’, in principle, is attainable at this melting temperature
with an elevated pressure of 50×105 Pa or above. Typical melt explosive of density 103 kg m−3

makes a rapid transition to a new state, a solid state as shown in figure 10. Again, the thickness
of the numerically obtained freezing front is on the order of microns, which is about 100
times the thickness of the condensation front of hydrocarbon liquid fuel. As the phase variable
changes from unity to zero, the deformation field goes from an unstressed liquid at F(−∞) ≈ 1
to a tensional state at F(+∞) ≈ 1.3. The front again moves from right to left with a steady
propagating speed of D ≈ 1.26 m s−1.

5. Conclusion

A thermo-mechanical model for energetic materials that undergo phase transformations is
reconstructed for understanding the structure of waves associated with combustion phenomena.
In particular, the thickness of evaporation and condensation phase fronts are analysed by
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Figure 10. Freezing front (liquid ϕ = 1 → solid ϕ = 0) structure observed from the transformed
density field of liquid HMX.
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Figure 11. Freezing front (liquid ϕ = 1 → solid ϕ = 0) structure observed from the transformed
phase field of liquid HMX.

integrating the structure equations of n-heptane from one state to the other. The thickness
estimation of melting and freezing waves is illustrated by considering HMX as an energetic
material undergoing phase transformation. Based on the analysis, the phase front width
of liquid–gas or gas–liquid phase (of, say, a liquid fuel) is approximately one-100th of the
calculated width of the solid–liquid or liquid–solid phase front of a high explosive. Though
not fully generalized at this stage, the approach illustrated in this paper can be extended to
phase front thickness estimations of a condensed matter whose front thickness measurement
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is not experimentally attainable. Other use of this technique may include size estimation of
a small scale device where melting and evaporation of liquid and solid fuels exist during the
normal operation of the device. Currently, additional candidate energetic materials are studied
for their phase front structure by extending the wavefront integration technique as discussed in
this work.
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Appendix

β ′
m(ϕ) =

{
6ϕ(1 − ϕ)

0
for 0 � ϕ � 1
otherwise

β ′
v(ϕ) =

{
6(ϕ − 1)(2 − ϕ)

0
for 1 � ϕ � 2
otherwise

µc(ϕ) =
{

2(µsol − µliq)ϕ
3 − 3(µsol − µliq)ϕ

2 + µsol

2(µliq)(ϕ − 1)3 − 3(µliq)(ϕ − 1)2 + µliq

for 0 � ϕ � 1
for 1 � ϕ � 2

µ′
c(ϕ) =

{
6(µsol − µliq)ϕ

2 − 6(µsol − µliq)ϕ

6(µliq)(ϕ − 1)2 − 6(µliq)(ϕ − 1)

for 0 � ϕ � 1
for 1 � ϕ � 2

µs(ϕ) =
{

2(µsol)ϕ
3 − 3(µsol)ϕ

2 + µsol

0
for 0 � ϕ � 1
for ϕ > 1

µ′
s(ϕ) =

{
6(µsol)ϕ

2 − 6(µsol)ϕ

0
for 0 � ϕ � 1
otherwise

µl(ϕ) =
{

2(−µliq)ϕ
3 − 3(−µliq)ϕ

2

2(µliq)(ϕ − 1)3 − 3(µliq)(ϕ − 1)2 + µliq

for 0 � ϕ � 1
for 1 � ϕ � 2

µ′
l(ϕ) =

{
6(−µliq)ϕ

2 − 6(−µliq)ϕ

6(µliq)(ϕ − 1)2 − 6(µliq)(ϕ − 1)

for 0 � ϕ � 1
for 1 � ϕ � 2

R(ϕ) =
{

2(−Rvap)(ϕ − 1)3 − 3(−Rvap)(ϕ − 1)2

0
for 1 � ϕ � 2
for ϕ < 1

R′(ϕ) =
{

6(−Rvap)(ϕ − 1)2 − 6(−Rvap)(ϕ − 1)

0
for 1 � ϕ � 2
otherwise

αc(ϕ) =
{

2(αsol)(ϕ − 1)3 − 3(αsol)(ϕ − 1)2

αsol

for 1 � ϕ � 2
for ϕ < 1

α′
c(ϕ) =

{
6(αsol)(ϕ − 1)2 − 6(αsol)(ϕ − 1)

0
for 1 � ϕ � 2
otherwise

ργϕ(ϕ) =
{

6(−ργϕ)ϕ2 − 6(−ργϕ)ϕ

6(−ργϕ)(ϕ − 1)2 − 6(−ργϕ)(ϕ − 1)

for 0 � ϕ � 1
for 1 � ϕ � 2

cv(ϕ) = cv
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